FINITE ELEMENT BASED SECOND MOMENT ANALYSIS FOR ELLIPTIC PROBLEMS WITH STOCHASTIC INPUT DATA

HELMUT HARBRECHT, REINHOLD SCHNEIDER, AND CHRISTOPH SCHWAB

Abstract. We compute the expectation and the two-point correlation of the solution to elliptic boundary value problems with stochastic input data. Besides stochastic loadings, via perturbation theory, our approach covers also elliptic problems on stochastic domains or with stochastic coefficients [1, 2]. The solution’s two-point correlation satisfies a deterministic boundary value problem with the two-fold tensor product operator on the two-fold tensor tensor product domain. For its numerical solution we apply a sparse tensor product approximation by multilevel frames [3]. This way standard finite element techniques can be used. Numerical examples illustrate feasibility and scope of the method.

Keywords: Elliptic boundary value problem, stochastic input data, sparse tensor product FEM, multilevel preconditioner, frames.


References


Institute for Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
E-mail address: harbrech@ians.uni-stuttgart.de

TU Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
E-mail address: schneidr@math.tu-berlin.de

Seminar for Applied Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
E-mail address: schwab@sam.math.ethz.ch